Category Archives: Sustainability

Engulfed by Plastic

Plastics are part of most of our daily activities. From the moment we wake up and use our plastic toothbrush, soaps and cosmetics from plastic containers, drink and eat foods also kept or wrapped in plastic, and go to work in front of our plastic computers and sit on our plastic chairs. We then go shopping and use plastic bags to transport stuff contained in plastic, drink from plastic bottles, and use our plastic TV’s and phones.

Only in the U.S. we use 60,000 plastic bags every 5 seconds! (By Chris Jordan)

And when we are done we just throw the plastic “away” and buy some more the next day, and the next, for the rest of our lives.

2 million Plastic Bottles are used in the US every 5 minutes (By Chris Jordan)

But where does plastic come from?

The process of making plastic begins with carbon from petroleum, natural gas or coal. Elements can be combined in different ways to achieve a  different type of plastic. The final product can range from a hard and shatter proof plastic container to a soft and flexible plastic wrap.

Plastics are durable, cheap, light and can be made into almost anything.

And it’s these useful properties which make plastics so harmful when they end up in the environment. Plastics do not degrade and stay in the environment for ever. Plastics “photo-degrade”, a process in which it is broken down into smaller and smaller pieces, all of which are still plastic particles, eventually becoming individual molecules of plastic.

It makes no sense to make disposable items such as water bottles or plastic bags that we are going to use for only a few minutes out of a material that is going to last forever in the environment.

And where does all this plastic end up?

Most of the plastic we use ends up in one of the overflowing landfills around the globe, but a lot of it ends up in the oceans. Only a small fraction gets recycled.

Plastic trash is found in the most remote parts of our oceans

Our oceans are becoming plastic dumps and marine life is taking a big toll.

Hundreds of thousands of sea turtles, sea birds, seals, whales and other marine mammals die every year from eating discarded plastic bags or plastic pieces mistaken for food.

Plastic bags look like jelly fish to most marine life

Sea turtles mistake plastics for food

Plastics are found even in the most remote parts of the ocean.

There are areas in the ocean where plastic accumulates more than in other places due to the ocean currents. One of the most studied is the “Great Pacific Garbage Patch”.

The Great Pacific Garbage Patch is an area of the Pacific Ocean created by the currents of the North Pacific Gyre. It’s a plastic soup that has concentrations in some areas of plastic 40 times greater than that of plankton. That means there is 40 times more plastic than food for the marine animals to eat. Scientists estimate its size as twice the area Texas to the size of the continental United States.

These pictures show examples of marine life impacted by plastics (the photos have not been manipulated):

Albatros Stomach filled with Plastics

Plastic Seal

Turtle in Plastic Ring

What can we do!?

It’s almost impossible to avoid using plastics, but there are a few things that we can easily do to stop dumping plastics into the environment

– Stop buying plastic water bottles, bring your own water bottle around and use water filters at home. It’s even better for your health since plastic bottles can leach nasty chemicals into the water.

You can get some cool bottles at KleanKanteen or Sigg.

-Stop using Plastic bags. Use reusable bags instead! Whether you are shopping for groceries, clothes or  anything else always bring your own bag.

You can get really nice reusable bags at any grocery store, but any bag that you have around the house will do. This are also some alternatives: Ecobags, Chicobags, Reuseit, and SnackTaxi for your sandwiches and lunches!

-Buy Less Packaged Food: Buy in bulk or get food and goods that come in the least amount of package as possible.

-Use soap bars and be mindful of the plastic containers that you buy and if possible avoid them.

-Recycle: Get a recycling bin from your local recycling program or go to Earth 911 a website that allows you to put in your zip code and any material you want to recycle. It will give you the phone number of the nearest facility in charge of collecting that material.

Sources:

Bag it the Movie

Algalita Marine Research Foundation

Chris Jordan

OCEANA

GREENPEACE

NOAA

Advertisement

Self Sufficient Buildings and Vertical Farms for the Future

desertification_1

Desertification due to unsustainable agricultural practices

By 2050 more than 70% of the world’s population will live in urban areas. By then the population increase (minimum of 3 billion people more) paired with a massive loss of fertile soils due to erosion, desertification, salinization, etc. will surely lead to disastrous food shortages.

We won’t have enough fertile soils to grow crops for all, and we certainly won’t want to cut down the little forest left to grow more food, the consequences of doing so would be devastating.

But some of the most ground-braking architects and scientists have already come up with a solution: self sustainable buildings with vertical farms.

Depending on the crops being grown, a single vertical farm using  hydroponic growing methods could also allow thousands of farmland acres to be permanently reforested.

One of the first models of vertical farming was conceived by Dr. Dickson Despommier, a professor of environmental sciences at Columbia University, who believes that vertical farm skyscrapers could help fight global warming.

Imagine a cluster of 30-story towers  producing fruit, vegetables, and grains while also generating clean energy and purifying waste water.  Despommier estimates that one of these buildings could feed 50,000 people for a year. A vertical farm could be self-sustaining and even produce a net output of clean water and energy.

Sky Farming (New York Magazine)

Sky Farming (New York Magazine) designed by Rolf Mohr

1. The Solar Panel Most of the vertical farm’s energy is supplied by the pellet power system . This solar panel rotates to follow the sun and would drive the interior cooling system, which is used most when the sun’s heat is greatest.
2. The Wind Spire
An alternative (or a complement) to solar power, conceived by an engineering professor at Cleveland State University. The wind spire uses small blades to turn air upward, like a screw.

3. The Glass Panels
A clear coating of titanium oxide collects pollutants and prevents rain from beading. The rain slides down the glass, maximizing light and cleaning the pollutants and it’s then collected for filtration.

4. The Control Room
The vertical-farm environment is regulated from here, allowing for year-round, 24-hour crop cultivation.

5. The Architecture Circular design uses space most efficiently and allows maximum light into the center. Modular floors stack like poker chips for flexibility.

6. The Crops

The vertical farm could grow fruits, vegetables, grains, and even fish, poultry.

The vertical farm doesn’t just grow crops indoors, it also generates its own power from waste and cleans up sewage water.

skyfarming2

New York Magazine

1. The Evapotranspiration Recovery System
Nestled inside the ceiling of each floor, its pipes collect moisture, which can be used as drinking water.

2. The Pipes
Work much like a cold bottle of Coke that “sweats” on a hot day: Super-cool fluid attracts plant water vapors, which are then collected as they drip off .  Despommier estimates that one vertical farm could capture 60 million gallons of water a year.

3. Black-Water Treatment System
Wastewater taken from the city’s sewage system is treated through a series of filters, then sterilized, yielding gray water—which is not drinkable but can be used for irrigation. (Currently, New York city throws 1.4 billion gallons of treated waste water into the rivers each day.)

New York Magazine

New York Magazine

4. The Crop Picker
Monitors fruits and vegetables with an electronic eye. Current technology, called a Reflectometer, uses color detection to test ripeness.

5. The Field
Maximization of space is critical, so in this rendering there are two layers of crops (and some hanging tomatoes). If small crops are planted, there might be up to ten layers per floor.

6. The Pool
Runoff from irrigation is collected here and piped to a filtration system.

7. The Feeder
Like an ink-jet printer, this dual-purpose mechanism directs programmed amounts of water and light to individual crops.

New York Magazine

New York Magazine

8. The Pellet Power System
Another source of power for the vertical farm, it turns nonedible plant matter (like corn husks, for example) into fuel. Could also process waste from New York’s 18,000 restaurants.

9 to 11. The Pellets
Plant waste is processed into powder (9), then condensed into clean-burning fuel pellets (10), which become steam power (11). At least 60 pellet mills in North America already produce more than 600,000 tons of fuel annually, and a 3,400-square-foot house in Idaho uses pellets to generate its own electricity.

Sumarazing some benefits of vertical Agriculture:

1-Uses less space and resources than traditional agriculture.

2-Agriculture land can be converted back to forest.

3-Dramatically reduces fossil fuel use (no tractors, shipping, etc).

4-No massive crop failures as a result of weather-related disasters.

5-Less likelihood of genetically modified strains entering the “natural” plant world.

6– All food could be grown organically, without herbicides, pesticides, or fertilizers, eliminating agricultural runoff.

7– It recycles and purifies water.

8-Generation of energy via methane  from composting non-edible parts of plants and animals, supplying not just food but energy, creating a truly self-sustaining environment.

9-Can have applications for arid environments or refugee camps as a food production source.

10-Great impact in reducing green house emissions.

Some other models of vertical agriculture:

Oliver Foster Vertical Farm

Oliver Foster Vertical Farm

The Living Skyscraper by Blake Kurasek

The Living Skyscraper by Blake Kurasek

The Living Tower by SOA Architects

The Living Tower by SOA Architects

To learn more about vertical farming designs:

http://www.verticalfarm.com/

Algae, the Fuel of the Future

Earth2tech

Earth2tech

Biofuels that come from corn, palm, sugar cane or soy are responsible for deforestation and an increase in food prices.

This is not the case of a  biofuel that was first considered in the seventies, and is now getting much deserved attention: algae.

Algae transform carbon dioxide and sunlight into energy so efficiently that they can double their weight several times a day, and can generate 30 times more oil per hectare than other plant based biofuels. Algae can grow in salt water, freshwater or even contaminated water, at sea or in ponds, and on land not suitable for food production.

Its production doesn’t require massive amounts of land like other plant based fuels.

On top of those advantages, algae grows better when fed extra carbon dioxide (the main greenhouse gas),  and on contaminated water bodies. By collecting algae we could produce biofuel while cleaning up other problems at the same time.

Various algae contain different levels of oil, and they can also be genetically modified to produce more oil. Most scientists argue that the algae found in pond scum is best suited for biodiesel.

Also, pressing algae creates a few more useful byproducts such as fertilizer and feedstock without depleting other food sources.

Once the oil’s extracted, it’s refined, mixed with an alcohol (such as methanol), and a few more steps will bring algae biodiesel fuel.

Polluted lake-Algal bloom

Polluted lake-Algal bloom

But the most exciting part of algae biodiesel is the great productivity at low cost (economic and environmental). Biodiesel makers claim they’ll be able to produce more than 800 gallons of algae oil per ha per year.

Algae production has the potential to outperform other potential biodiesel products such as palm or corn. For example, a 50 ha algae biodiesel plant could potentially produce 10 million gallons of biodiesel in a single year. Experts estimate it will take 140 billion gallons of algae biodiesel to replace petroleum-based products each year. To reach this goal, algae biodiesel companies will only need about 40 million ha of land to build biodiesel plants, compared to billions of hectares for other biodiesel products. Since algae can be grown anywhere indoors, it’s a promising element in the race to produce a new fuel.

For now algae based biofuel is still in the R&D stage, but we’ll hopefully  run our cars on this uber green fuel in our lifetime.

Some interesting Algae Biodiesel Start-ups:

GreenFuel

Aurora

BFS

Saphire

Less than 50 years to say goodbye to Sushi

According to the U.N. Food and Agriculture Organization, 75 % of the world’s fisheries are now either over-exploited, fully exploited or significantly depleted. A study published in Nature concluded that 90 % of the “big” fish (tuna, swordfish, and marlin) are already gone.

Scientists agree that if we continue to fish at our current rates, all commercial fish species will disappear in the next 50 years.

Government subsidies to the fishing sector, totaling approximately $20 billion annually, represent one of the principal forces behind the overfishing crisis. But the biggest force behind this crisis are the world’s industrial fishing fleets which are destroying the ocean at an alarming rate.

If all the fish we ate was caught old school using a simple fishing rod the oceans would be in much better shape. Small fishermen are trying to shift to sustainable practices, because they are realizing that overfishing is not only destroying the ocean, but also destroying their livelihood, leaving them with no fish left  to catch.

But unfortunately most of the fish that we consume doesn’t come from sustainable sources, it comes from large industrial boats that use highly destructive fishing methods and harvest massive amounts of fish at an unsustainable rate.

Following are some of the most destructive and also most common fishing practices. This is how the fish we consume gets harvested from our oceans and ends in our kitchen and restaurant tables:

Bottom Trawling:

Bottom trawling involves dragging huge, heavy nets along the sea floor. Large metal plates and rubber wheels attached to these nets move along the bottom and crush nearly everything in their path, coral, sponges, plants, and all kids of sea life. It literally scraps the ocean floor clean of life.

It is used to fish cod, haddock, squid, shrimp and crustaceans among other commercial fish.

If allowed to continue, the bottom trawlers will destroy deep sea species before we have even discovered much of what is out there. What we are doing to our deep oceans by allowing trawling is like driving a huge bulldozer through an unexplored, lush and richly populated forest leaving a flat and lifeless desert.

This practice is so widespread and damaging that it can even be seen from space:

bottom-trawling-from-space

Bottom Trawling from Space

Botom Trawling

Bottom Trawling

Bottom Trawler

Bottom Trawler (Greenpeace)

spanish_trawler

Ocean Floor Before and After Trawling

Ocean Floor Before and After Trawling

Long lines:

Long-lining is one of the most widespread methods of fishing. The lines are up to 130 km long (80 miles) and have hundreds of thousands of baited hooks at a time. The hooks are dragged behind the boat at varying depths or are kept afloat by buoys and left overnight.

This method is used to catch mainly tuna and swordfish, but it also kills millions of sea birds, dolphins turtles, and other marine life every year.

pelagic_longline

Oceana

turtle__fishing_line

Turtle killed by a long line

Gillnets:

Gill nets hang like massive curtains in the oceans, drifting with the currents. Ranging from 3.5 to 10 km in length, gill nets are weighted at the bottom and held upright by floats at the top, creating what some have deemed “walls of death.”

Fish are unable to see the netting, and unless the mesh size is larger than the fish, they get stuck. When they try to back out, the netting catches them by their gills or fins and they get stuck.

In many occasions they are left to drift for days an many of them get lost (become ghost nets) killing thousands of untargeted marine life- specially dolphins, turtles and seals.

Gilnet (By Oceana)

Gilnet (By Oceana)

ww1994-gillnet

Sea Lion killed by Gillnet

Purse Seines:

This is the primary fishing method for tuna fish. Tuna swim at the same level as dolphins, and fishermen usually track dolphin pods in order to locate tuna.

The dolphin schools are then chased by small high-speed boats or even helicopters that accompany the fishing boats. When the dolphins begin to tire, the fishermen encircle the school with huge nylon nets that are up to 5 km long and 100 m deep. When both the dolphins and the tuna have been completely surrounded, the bottom of the net is pulled closed, much like a drawstring purse, hence the name purse-seining. Purse-seining has proven to be an extremely effective method of catching fish. Entire schools of tuna are able to be scooped up without a single fish escaping. Unfortunately, many dolphins are also killed in the process, as they become entangled in the nets and drown, or are crushed as the nets are pursed and hauled in.

pursesiene

Dolphins and Tuna trapped in a Purse Seine Net

Dolphins and Tuna trapped in a Purse Seine Net

Solutions:

  • Only 0.8% of the ocean is protected, we need to make more ocean sanctuaries where fishing is prohibited.
  • We need to ban these destructive fishing practices which are not only damaging the oceans, but also endangering the only protein source of millions of people and endangering the livelihood of many small fishermen.
  • Shifting to sustainable  fishing practices,  having stricter quotas and regulations could aid the recovery of most commercial fisheries.
  • Demand and support safer fishing alternatives, it is possible and it must be done soon!
  • Aquaculture can be an alternative, but it also has many negative consequences if not properly managed. There are sustainable aquaculture farms, but it depends on the fish you want to grow (some species are more suitable than others) and the methods used.

Guide to sustainable Sea Food :

Most Sustainable Fish : Anchovies, Sardines, Salmon (Wild), Mussels, Mackerel (Atlantic), Oysters (Farmed), Trout, Clams (Farmed), Lobster, Halibut, Crab.

Least Sustainable: Chilean Sea Bass, Tuna, Grouper, Cod, Swordfish, Shrimp, Salmon (Farmed), Octopus, Monk fish, Mahimahi (Imported), Snapper (Imported).

—————————————————————————————————————————

(Spanish)

Guia para comer pescado/marisco:

Mejores opciones: Anchoas/Boquerones, Sardinas, Salmon (Salvaje), Mejillones, Cavalla, Ostras (Cultivadas), Trucha, Almejas (Cultivadas), Langosta, Cangrejo.

Marisco menos sostenible:  Atun, Bacalao, Pez Espada/Emperador, Gambas (importadas), Salmon (piscifactoria), Lubina (Importada de Chile/Asia), Pulpo, Rape, Dorada (Asia o Sur America)

SOURCES:

Oceana

Greenpeace

WWF

Environmental Defense Fund